

Norm: UNI EN 1676 e 1706

Numeric designation: EN AB and AC - 44300

Symbolic designation: EN AB and AC - AlSi12(Fe)(a)

CHEMICAL COMPOSITION %

ALLOY DESIGNATION		ELEMENTS												
		Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Pb	Sn	Ti	Other each	Other total
EN AB 44300 EN 1676:2020	Min	10,5	0,45	0	0	0	0	0	0	0	0	0	0	0
	Max	13,5	0,9	0,08	0,55	0,05	0,05	0,05	0,15	0,05	0,05	0,15	0,05	0,25
EN AC 44300 EN 1706:2020	Min	10,5	0	0	0	0	0	0	0	0	0	0	0	0
	Max	13,5	1,0	0,10	0,55	0,05	0,05	0,05	0,15	0,05	0,05	0,15	0,05	0,25

NOTE: Other each includes the limits of all elements unspecified in the grid.

MECHANICAL PROPERTIES

(Mechanical properties obtained from samples cast separately at +20°C room temperature)

CASTING PROCESS (condition)	TEMPER DESIGNATION	Rm		Rp02		A		HB		R Fatigue*	
		Tensile strength		Yield strength		Elongation		Brinell hardness		Fatigue resistance	
		EN 1706:2020		EN 1706:2020		EN 1706:2020		EN 1706:2020		EN 1706:2020	
		MPa		MPa		%		HBW		MPa	
HIGH PRESSURE DIE CASTING	F	240		130		1		60		60 - 90	

*Values for tests under rotating bending conditions up to 10^7 cycles (Wöhler curve)

PHYSICAL PROPERTIES

(The following properties are spoilt by the variation of the chemical composition, by its metallurgic structure, casting integrity and casting conditions, therefore these values are approximate)

SPECIFIC WEIGHT	2,68 Kg/dm ³	ELECTRICAL CONDUCTIVITY	EN 1706:2020	16 - 22 MS/m
SPECIFIC HEAT (at 100 °C)	0,90 J/gK	THERMAL CONDUCTIVITY	EN 1706:2020	130 - 160 W/(m K)
ELASTIC MODULUS	75 GPa	LINEAR THERMAL EXPANSION (20 °C - 100 °C)	EN 1706:2020	20·10 ⁻⁶ /K

Norm: UNI EN 1676 e 1706

Numeric designation: EN AB and AC - 44300

Symbolic designation: EN AB and AC - AlSi12(Fe)(a)

TECHNOLOGICAL FEATURES

(Quality indications excerpted from the norm EN 1706:2020)

CASTABILITY	A
REASISTANCE TO HOT TEARING	A
PRESSURE TIGHTNESS	C
MACHINABILITY (after cast)	C
MACHINABILITY (after heat treatment)	-
RESISTANCE TO CORROSION	B / C

DECORATIVE ANODIZING	E
ABILITY TO BE WELDED	D
ABILITY TO BE POLISHED	D
STRENGHT AT ROOM TEMPERATURE	B
STRENGHT AT ELEVATED TEMPERATURE (200°C)	C
DUCTILITY	C

A: EXCELLENT, B: GOOD, C: FAIR, D: POOR, E: NOT RECOMMENDED, F: UNSUITABLE

GUIDELINES FOR USE

The ingot re-melting process must be carried out as fast as possible and overheating must be avoided (maximum melting temperature 740°C). Iron tools that may be touched by the liquid metal must be specially painted to avoid spoiling the alloy. The best alloy purification results are achieved by treating the alloy with inert gases, such as nitrogen and/or argon, to remove dissolved hydrogen and any oxides in the liquid bath. A careful skimming of the bath is recommended. It is allowed to recycle sprues and casting appendages up to 40% of the total charge weight.

Heat Treatment - Alloy not to be treated.

FURTHER FEATURES OF THE ALLOY

Resistance to weathering and seawater - Limited resistance to weathering; not suitable for applications directly touched by seawater.

Notes - Castability is excellent and makes it possible to use it a lot. The higher the content of Mg is, the more this alloy tends to hot tearing, even if this tendency is not well-defined.

USUAL APPLICATIONS

This alloy is suitable for complex castings, thanks to its good pressure tightness and weldability. It is used in the automotive, engine, railway, aeronautics and armory industries.

This alloy **complies (for information)** with Standard **EN 601**.